Arbres quaternaires

Algorithmique et structures de données, 2024-2025

P. Albuquerque (B410) et O. Malaspinas (A401), ISC, HEPIA 2025-04-04

En partie inspirés des supports de cours de P. Albuquerque

Rappel sur les arbres quaternaires

Définition?

Rappel sur les arbres quaternaires

Définition?

• Arbre dont chaque nœud a 4 enfants ou aucun.

Utilisation dans ce cours?

Rappel sur les arbres quaternaires

Définition?

Arbre dont chaque nœud a 4 enfants ou aucun.

Utilisation dans ce cours?

- Stockage/compression d'image
- Chaque pixel correspond à une feuille
- Des portions de l'image peuvent être compressées sans/avec perte

Transformations avec un arbre quaternaire

A faire

- Symétrie axiale (horizontale/verticale).
- Rotation quart de cercle (gauche/droite).
- Compression.

La symétrie verticale

Que donne la symétrie verticale de

La symétrie verticale

Que donne la symétrie verticale de

```
SG=0
        SD=1
21 | 12 | 4 |
     1 | 3 | 27
 IG=2 | ID=3
 SG=0
      | SD=1
 4 | 4 | 12 | 21
31 I
27 | 3 | 1 | 1
  IG=2 |
         ID=3
```



Comment faire sur une matrice (3min, matrix)?

La symétrie d'axe vertical

Comment faire sur une matrice (3min, matrix)?

```
matrice symétrie(matrice)
  pour i de 0 à nb_lignes(matrice)
     pour j de 0 à nb_colonnes(matrice)/2
         échanger(matrice[i][j], matrice[i][nb_colonnes(matrice)-1-j])
  retourne matrice
```

La symétrie d'axe vertical

Comment faire sur un arbre?

Faire un dessin de l'arbre avant/après (5min, matrix)

Écrire le pseudo-code (3min, matrix)

La symétrie d'axe vertical

Comment faire sur un arbre?

Faire un dessin de l'arbre avant/après (5min, matrix)

Écrire le pseudo-code (3min, matrix)

```
arbre symétrie(arbre)
  si !est_feuille(arbre)
    échanger(arbre.enfant[0], arbre.enfant[1])
    échanger(arbre.enfant[2], arbre.enfant[3])
    pour i de 0 à 3
        symétrie(arbre.enfant[i])
  retourne arbre
```

La symétrie d'axe horizontal

■ Trivial de faire l'axe horizontal (exercice à la maison)

Comment faire sur un arbre?

Faire un dessin de l'arbre avant/après (5min, matrix)

Écrire le pseudo-code (3min, matrix)

Comment faire sur un arbre?

Faire un dessin de l'arbre avant/après (5min, matrix)

Écrire le pseudo-code (3min, matrix)

```
rien rotation_gauche(arbre)
si !est_feuille(arbre)
échange_cyclique_gauche(arbre.enfant)
pour i de 0 à 3
rotation_gauche(arbre.enfant[i])
```

Comment faire sur un arbre?

```
SG=0 | SD=1 | SD=1 | SG=0 | SD=1 | SD
```

• Écrire le vrai code (5min, matrix)

Comment faire sur un arbre?

Écrire le vrai code (5min, matrix)

```
void rotate(node *qt) {
    if (!is_leaf(qt)) {
        node *tmp = qt->child[2];
        qt->child[2] = qt->child[0];
        qt->child[0] = qt->child[1];
        qt->child[1] = qt->child[3];
        qt->child[3] = tmp;
        for (int i=0; i<CHILDREN; i++) {
            rotate(qt->child[i]);
        }
    }
}
```

Compression sans perte (1/5)

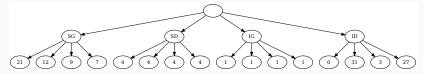
Idée générale

Regrouper les pixels par valeur

Comment faire?

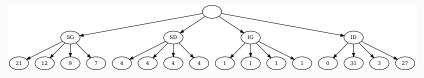
Compression sans perte (2/5)

Que devient l'arbre suivant?

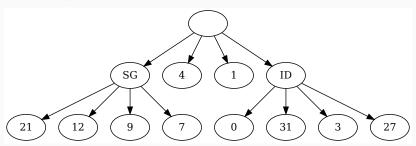


Compression sans perte (2/5)

Que devient l'arbre suivant?



Arbre compressé



Compression sans perte (3/5)

- Si un nœud a tous ses enfants égaux:
 - Stocker cette valeur dans ce nœud,
 - Supprimer ses enfants.
- Jusqu'à remonter à la racine.

Écrire le pseudo-code (5min, matrix)

Compression sans perte (3/5)

- Si un nœud a tous ses enfants égaux:
 - Stocker cette valeur dans ce nœud,
 - Supprimer ses enfants.
- Jusqu'à remonter à la racine.

Écrire le pseudo-code (5min, matrix)

```
rien compression_sans_perte(arbre)
    si !est_feuille(arbre)
    pour i de 0 à 3
        compression_sans_perte(arbre.enfant[i])
    si derniere_branche(arbre)
        valeur, toutes_égales = valeur_enfants(arbre)
        si toutes_egales
            arbre.info = valeur
            detruire_enfants(arbre)
```

Compression sans perte (4/5)

Écrire le code C (5min, matrix)

Compression sans perte (4/5)

Écrire le code C (5min, matrix)

```
void lossless_compression(node *qt) {
    if (!is_leaf(qt)) {
        for (int i=0; i<CHILDREN; i++) {</pre>
            lossless_compression(qt->child[i]);
        }
        if (is_last_branch(qt)) {
            int val = -1;
            if (last_value(qt, &val)) {
                 qt->info = val;
                 for (int i=0; i<CHILDREN; ++i) {</pre>
                     free(qt->child[i]);
                     qt->child[i] = NULL;
```

Compression sans perte (5/5)

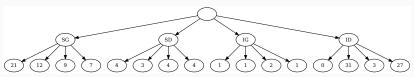
```
bool is_last_branch(node *qt) {
    for (int i = 0; i < CHILDREN; ++i) {</pre>
        if (!is_leaf(qt)) {
            return false;
    return true;
bool last_value(node *qt, int *val) {
    int info = qt->child[0];
    for (int i = 1; i < CHILDREN; ++i) {</pre>
        if (info != qt->child[i]) {
            return false;
    *val = info;
    return true;
```

Idée générale

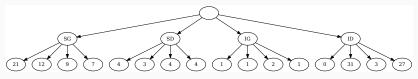
Regrouper les pixels par valeur sous certaines conditions

On enlève si l'écart à la moyenne est "petit"?

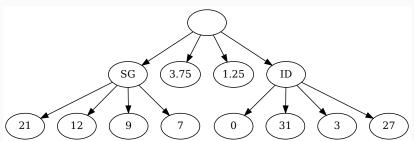
Que devient l'arbre suivant si l'écart est petit?



Que devient l'arbre suivant si l'écart est petit?



Arbre compressé



Comment mesurer l'écart à la moyenne?

Comment mesurer l'écart à la moyenne?

Avec l'écart-type

$$\mu = \frac{1}{4} \sum_{i=0}^3 p[i], \quad \sigma = \sqrt{\frac{1}{4} \sum_{i=0}^3 (\mu - p[i])^2} = \sqrt{\frac{1}{4} \left(\sum_{i=0}^3 p[i]^2\right) - \mu^2}$$

Que devient l'algorithme?

Comment mesurer l'écart à la moyenne?

Avec l'écart-type

$$\mu = \frac{1}{4} \sum_{i=0}^3 p[i], \quad \sigma = \sqrt{\frac{1}{4} \sum_{i=0}^3 (\mu - p[i])^2} = \sqrt{\frac{1}{4} \left(\sum_{i=0}^3 p[i]^2\right) - \mu^2}$$

Que devient l'algorithme?

- Si $\sigma < \theta$, où θ est la **tolérance**:
 - Remplacer la valeur du pixel par la moyenne des enfants.
 - Remonter les valeurs dans l'arbre.

Quelle influence de la valeur de θ sur la compression?

Comment mesurer l'écart à la moyenne?

Avec l'écart-type

$$\mu = \frac{1}{4} \sum_{i=0}^{3} p[i], \quad \sigma = \sqrt{\frac{1}{4} \sum_{i=0}^{3} (\mu - p[i])^2} = \sqrt{\frac{1}{4} \left(\sum_{i=0}^{3} p[i]^2\right) - \mu^2}$$

Que devient l'algorithme?

- Si $\sigma < \theta$, où θ est la **tolérance**:
 - Remplacer la valeur du pixel par la moyenne des enfants.
 - Remonter les valeurs dans l'arbre.

Quelle influence de la valeur de θ sur la compression?

• Plus θ est grand, plus l'image sera compressée.

Que devient l'arbre avec $\theta = 0.5$?

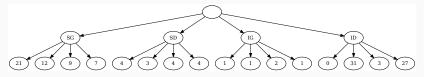


Figure 1: L'arbre original.

Que devient l'arbre avec $\theta = 0.5$?

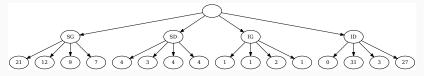


Figure 1: L'arbre original.

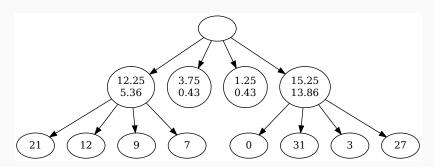


Figure 2: Arbre compressé.

Modifications sur la structure de données?

Modifications sur la structure de données?

• On stocke la moyenne, et la moyenne des carrés.

```
struct noeud
  flottant moyenne, moyenne_carre
  node enfants[4]
```

Comment on calcule moyenne et moyenne_carre sur chaque nœud (pseudo-code)?

Calcul de la moyenne

Pseudo-code (5min, matrix)

Calcul de la moyenne

Pseudo-code (5min, matrix)

```
rien moyenne(arbre) {
    si !est_feuille(arbre)
        pour enfant dans arbre.enfants
            moyenne(enfant)
    pour enfant dans arbre.enfants
            arbre.moyenne += enfant.moyenne
            arbre.moyenne_carre += enfant.moyenne_carre
            arbre.moyenne /= 4
            arbre.moyenne_carre /= 4
```

La compression avec pertes

Pseudo-code (5min, matrix)

La compression avec pertes

Pseudo-code (5min, matrix)

```
rien compression_avec_pertes(arbre, theta)
    si !est_feuille(arbre)
    pour i de 0 à 3
        compression_avec_pertes(arbre.enfant[i])
    si derniere_branche(arbre)
        si racine(arbre.moyenne_carre - arbre.moyenne^2) < theta
        detruire_enfants(arbre)</pre>
```

Le code en entier

```
arbre = matrice_â_arbre(matrice)
moyenne(arbre)
compression_avec_pertes(arbre)
```

La dynamique des corps célestes

Slides très fortement inspirés du cours de J. Latt, Unige

Simulation du problème à N-corps

- Prédiction du mouvement d'un grand nombre de corps célestes.
- Modélisation:
 - On se limite aux étoiles;
 - Chaque étoile est caractérisée par un point (coordonnées) et une masse:
 - On simule en deux dimensions.
 - Interactions uniquement par les lois de la gravitation Newtonienne (oui-oui c'est de la physique!).

Les équations du mouvement

Mouvement de la i-ème étoile

• Algorithme de Verlet $(t_{n+1} = t_n + \delta t)$

$$\vec{x}_i(t_{n+1}) = 2\vec{x}_i(t_n) - \vec{x}_i(t_{n-1}) + \vec{a}_i(t_n)\delta t^2.$$

Force de gravitation

- $\quad \bullet \quad \vec{a}_i(t_n) = \vec{F}_i/m_i.$
- Sur l'étoile i, la force résultante est donnée par

$$\vec{F}_i = \sum_{i=1, i \neq i}^{N} \vec{F}_{ij}.$$

avec

$$\vec{F}_{ij} = \frac{Gm_i m_j (\vec{x}_j - \vec{x}_i)}{||\vec{x}_i - \vec{x}_i||^3}.$$

Algorithme du problème à n-corps

Pseudo-code: structure de données

```
struct étoile
  flottant m
  vec x, x_precedent, f
```

Pseudo-code: itération temporelle

```
rien iteration_temporelle(étoiles, dt)
    pour étoile_une dans étoiles
        étoile une.f = 0
        pour étoile_deux dans étoiles
            si (étoile un != étoile deux)
                étoile une.f +=
                    force (étoile_une, étoile_deux)
    pour étoile dans étoiles
        étoile.x, étoile.x precedent =
            verlet (étoile.x, étoile.x_precedent,
                   étoile.f / étoile.m, dt)
```

Algorithme du problème à n-corps

Complexité

• Complexité de chacune des parties?

Algorithme du problème à n-corps

Complexité

- Complexité de chacune des parties?
- lacksquare $\mathcal{O}(N^2)$, $\mathcal{O}(N)$.

En temps CPU pour une itération

- Si le temps pour N=1 est environ $1\mu s$, on a:

N	N^2	t [s]	t [réel]
10	10^2	1e-4	
10^4	10^8	1e+2	~1min
10^6	10^12	1e+6	~11j
10^9	10^18	1e + 12	~30K ans
10^11	10^22	1e+16	$\sim\!300M$ ans

- Typiquement, il y a des milliers-millions d'itérations.
- Il y a 10^{11} étoiles dans la galaxie.
- Houston we have a problem.

Question

Comment faire mieux? Des idées?

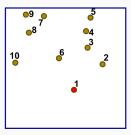
Question

Comment faire mieux? Des idées?

- Si un groupe d'étoiles est suffisamment loin, on le modélise comme un corps unique situé en son centre de masse.
- Exemple: Si on simule plusieurs galaxies, on considère chaque galaxie comme un corps unique!
- Un arbre quaternaire est une structure parfaite pour regrouper les étoiles.

Le cas à 10 corps

Illustration: le cas à 10 corps



Problématique

• On veut calculer la force sur 1.

Le cas à 10 corps

Illustration: le cas à 10 corps

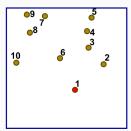
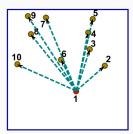


Illustration: le cas à 10 corps



Problématique

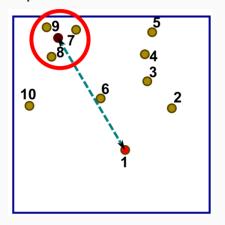
• On veut calculer la force sur 1.

Résultat

• Calcul et somme des forces venant des 9 autre corps.

Le cas à 10 corps

Réduction d'un groupe à un seul corps

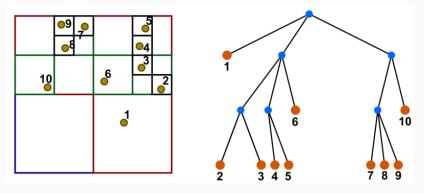


Idée

- On accélère le calcul en traitant un groupe comme un seul corps.
- Fonctionne uniquement si le groupe est assez loin.
- Autrement l'approximation est trop grossière.

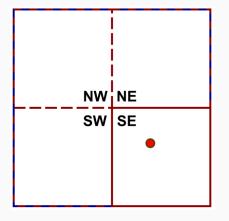
Solution: l'arbre quaternaire

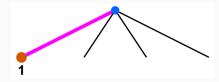
Corps célestes - arbre



- On omet les nœuds vides pour alléger la représentation.
- La numérotation est:
 - 0: ID
 - 1: SD
 - 2: IG
 - 3: SG

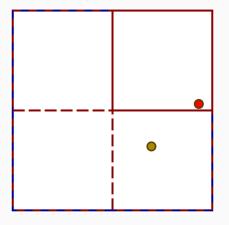
Insertion corps 1

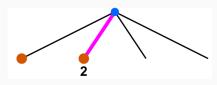




- Quadrant ID.
- La feuille est vide, on insère.

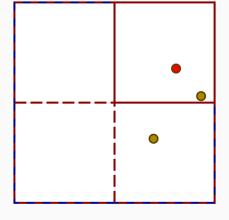
Insertion corps 2

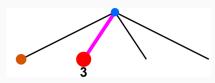




- Quadrant SD.
- La feuille est vide, on insère.

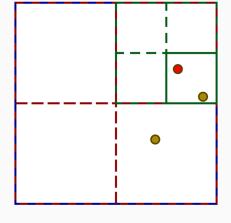
Insertion corps 3 (1/N)

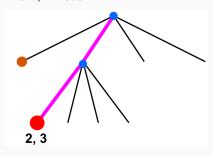




- Quadrant SD.
- La feuille est prise par 2.

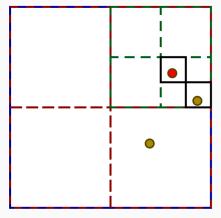
Insertion corps 3 (2/N)



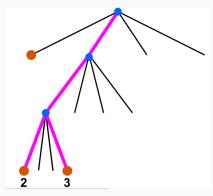


- On crée un nouveau nœud.
- Deux corps dans le nœud ID.
- On crée un nouveau nœud.

Insertion corps 3 (3/N)



Arbre, niveau 3



- 2 va dans ID.
- 3 va dans SG.
- C'est des feuilles vides, tout va bien.

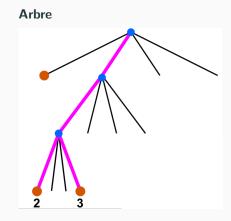
Que fait-on avec les nœuds intérieurs?

- On les utilise pour:
 - stocker la masse totale;
 - stocker le centre de masse.

$$m = m_2 + m_3, \tag{1}$$

$$\vec{x} = \frac{m_2 \vec{x}_2 + m_3 \vec{x}_3}{m}.$$
 (2)

Chaque feuille contient une étoile



Résumé

- Insertion du corps c dans le nœud n en partant de la racine.
- Si le nœud n
 - ne contient pas de corps, on y dépose c;
 - est interne, on met à jour masse et centre de masse, c est inséré récursivement dans le bon quadrant;
 - est externe, on subdivise n, on met à jour la masse et centre de masse, on insère récursivement les deux nœuds dans les quadrants appropriés.

Remarque

- Il faut stocker les coordonnées des quadrants.
- Un nœud a un comportement différent s'il est interne ou externe.

Algorithme d'insertion

Structure de données

```
struct node
  etoile e // externe: pour stocker
  etoile sup_etoile // interne: pour stocker m, x
  quadrant q // coordonnées du quadrant
  node enfants[4]
```

Remarque:

 On fait une simplification "moche": sup_etoile pourrait juste avoir une masse et une position.

Algorithme d'insertion

Algorithme d'insertion, pseudo-code (15min, matrix)

Algorithme d'insertion

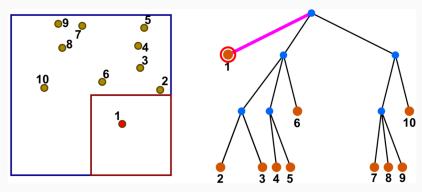
Algorithme d'insertion, pseudo-code (15min, matrix)

```
rien insertion etoile(arbre, e)
    si (!est_vide(arbre) && dans_le_quadrant(arbre.q, e.x)) {
        si (est_feuille(arbre))
            si (!contient etoile(arbre))
                arbre.e = e
            sinon
                // on crée enfants et arbre.sup etoile est initialisée
                subdivision arbre(arbre, e)
                pour enfant dans arbre enfants
                    insertion etoile(enfant, arbre.e)
                pour enfant dans arbre enfants
                    insertion etoile (enfant, e)
                destruction(arbre.e)
        sinon
            maj_masse_cdm(arbre.sup_etoile, e)
            pour enfant dans arbre.enfants
                insertion_etoile(enfant, e)
```

Utilisation de l'arbre

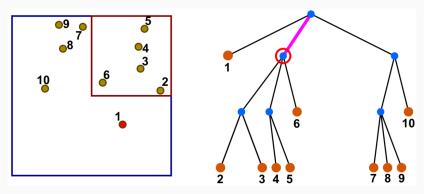
- L'arbre est rempli: comment on calcule la force sur le corps 1?
- Parcours de l'arbre:
 - Si la distance entre 1 et le centre de masse est suffisante, on utilise la masse totale et centre de masse pour calculer la force.
 - Sinon on continue le parcours.

Calcul de la force sur 1



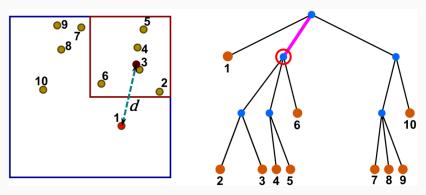
• Le cadrant ID ne contient que 1, rien à faire.

Calcul de la force sur 1

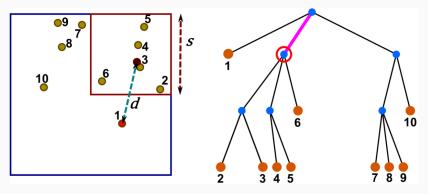


• Le cadrant SG contient 5 corps.

Calcul de la force sur 1



• La distance entre 1 et le centre de masse de SG est d.



- La distance entre 1 et le centre de masse de SG est d.
- Est-ce que d est assez grand?
- On va comparer avec la distance d avec la taille du quadrant s.

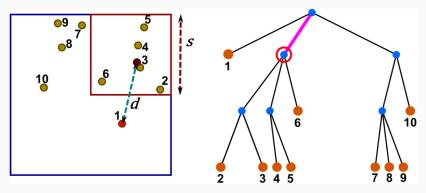
Critère θ

- \bullet On compare $d = ||\vec{x}_1 \vec{x}_{cm}||$ avec s la taille du quadrant.
- Le domaine est assez éloigné si

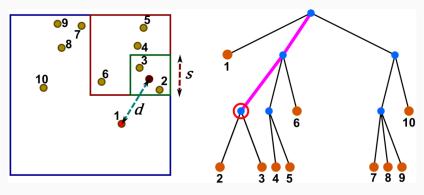
$$\frac{s}{d} < \theta,$$

- θ est la valeur de seuil.
- Une valeur typique est $\theta=0.5$, donc la condition devient

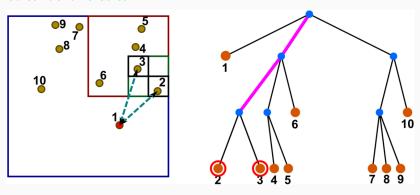
$$d > 2s$$
.



- Ici d < 2s, domaine rejeté.
- On descend dans l'arbre.



- s est plus petit, mais....
- Cela ne suffit pas d < 2s, domaine rejeté.



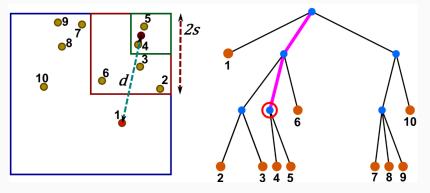
- Les nœuds sont des feuilles, on calcule la force.
- On ajoute la force qu'ils exercent sur 1.

Algorithme pour le calcul de la force

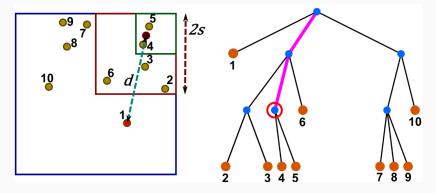
Pour calculer la force sur un corps c, on parcourt l'arbre en commençant par la racine:

- Si le nœud n est une feuille et n'est pas c, on ajoute la force dûe à n sur c;
- Sinon, si $s/d < \theta$, on traite n comme une feuille et on ajoute la force dûe à n sur c;
- Sinon on continue sur les enfants récursivement.

Continuons notre exemple précédent!



- If y a deux corps dans le quadrant vert.
- Quel est le critère pour remplacer les étoiles par leur centre de masse?



- If y a deux corps dans le quadrant vert.
- Quel est le critère pour remplacer les étoiles par leur centre de masse?
- $\begin{tabular}{ll} \blacksquare Et oui! $d>2s$, donc on peut remplacer les étoiles par leur centre de masse! \end{tabular}$

Algorithme du calcul de force

Écrire le pseudo-code-code du calcul de la force